Developing Waste Acceptance Criteria for Advanced Reactor Waste Forms in the Universal Canister System

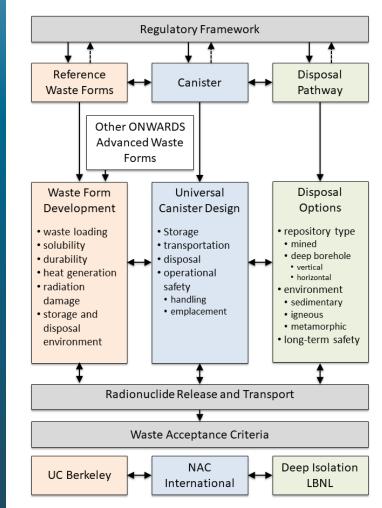
13 June 2024

Jesse Sloane, PE Executive VP of Engineering Deep Isolation

Agenda

- Project Overview
- Progress and Future Work per Workstream
- Development of Waste Acceptance Criteria
- Conclusion
- Questions

Project Overview


Project UPWARDS

Universal Performance Criteria and Canister for Advanced Reactor Waste Form Acceptance in Borehole and Mined Repositories Considering **D**esign **S**afety

~2 years into 3-year project

DEEP ISOLATION

- Four workstreams:
 - Waste Form Development UCB
 - Canister Design and Prototype NAC 2.
 - 3. Models and Generic Performance Assessment – DI/LBNL
 - 4. Regulatory Review and Waste Acceptance Criteria – DI



Workstream 1: Waste Form Development

- Waste form research
 - Lanthanide Borosilicate (LaBS) glass
 - TRISO
 - Frozen halide salt
- Developed standards & specifications gap analysis
- Setting up experiments
- Culminates in recommended standards and specifications for waste forms

Demkowicz, Paul, and Hunn, John D. *Two decades of DOE investment lays the foundation for TRISO-fueled reactors*. United States: N. p., 2020. Web.

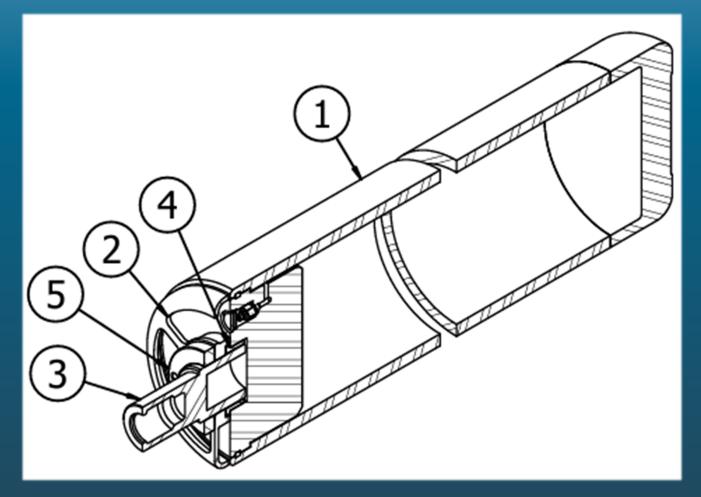
performance assessment inputs

Workstream 2: Preliminary Universal Canister Design

- Developed
 - Functional Requirements
 Specification
 - Design Specification
 - Preliminary Design & Analysis
 - Limiting configurations (normal & off-normal)
 - Storage
 - Transport
 - Disposal
- In Progress
 - Prototype Fabrication

Discipline	Evaluation Description
Structural	UCS External Pressure and Stacking Analysis
	UCS Handling Stress Analysis
	UCS Transfer 20-foot End Drop Evaluation
	Drag Force for UCS Borehole Drop
Nuclear	UCS Source Term and Shielding Evaluation for TRISO Fuel
	UCS Criticality Evaluation for TRISO Fuel
Thermal	UCS Thermal Analysis

BERKELEY LAB



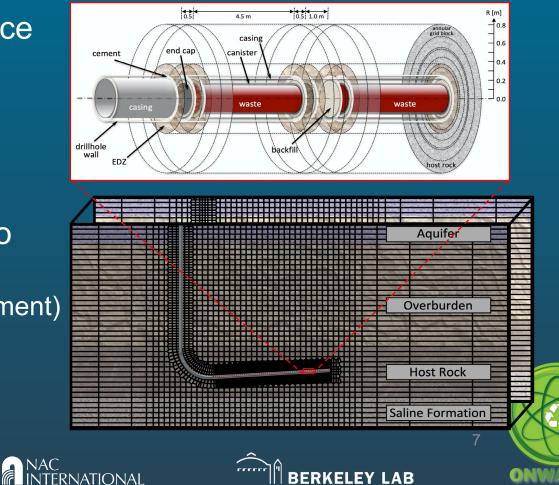
UCS Preliminary Design

ltem No.	Description
1	UCS Assembly
2	Cap Plate
3	Lift Adapter
4	Key Plate
5	Jam Plate

UPWARDS

DEEP ISOLATION[®]

Workstream 3: Integrated Safety & Performance Assessments


Developed

- Representative safety & performance assessment models for mined and borehole repositories
- Source-term models

• In Progress

- Calculating safety & performance to determine performance envelope
 > Input to Workstream 4 (WAC development)
- Documentation of results

DEEPISOLATION®

Workstream 4: Development of Waste Acceptance Criteria

Developed

 Review of existing regulatory requirements and waste acceptance criteria

In Progress

- Formulation of generic WAC
- WAC coupling against disposal configurations

DEEPISOLATION®

Regulatory Topic	Consideration
Borehole Conditions	Extent of design flexibility
Borenole Conditions	Credit for overly robust boreholes
LICE Design Credit	Extent to which canister factors into "canister plus waste acceptability"
UCS Design Credit	Credit for radiological, chemical, and mechanical stability
Retrievability Period	Assumed timing for retrievability, backfilling, and sealing
	Minimum conditions thereafter
Managing AR Waste versus Legacy Waste	Extent to which lessons learned from LWR mgt informs AR guidance



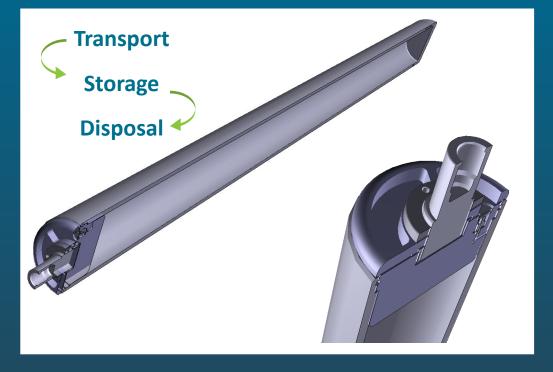
Integration of Workstreams

- Task 3.1Develop representative safety and
performance assessment models
for different disposal concepts
- *Task 3.2* Develop source-term models for different waste forms and disposal concepts
- *Task 3.3* Calculate safety and performance measures and determine performance envelope
- *Task 3.4* Identify acceptable range of safety-relevant design factors and site characteristics

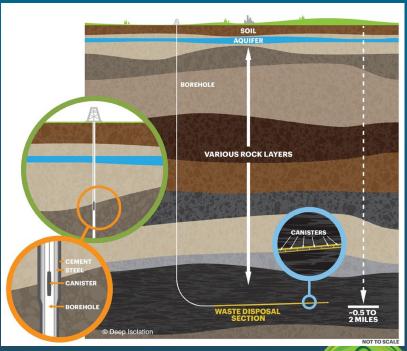
Categories of Waste Acceptance Criteria

- Based upon review of WAC/WASRD for:
- RH-TRU at WIPP
- Vitrified waste at DWPF
- Many of these considerations are addressed by UCS design and analysis
- Identifying compliance methods as WAC are further generated

Торіс	Consideration
Containor Bronartias	Physical dimensions & weights
Container Properties	Mechanical performance
	Radiation effects (dose rate)
Radialogical Properties	Contamination control
Radiological Properties	Decay heat
	Nuclear criticality
Physical Properties	Free liquids
Physical Properties	Compressed gases
	Chemical durability
	Combustibility
Chemical Properties	Gas generation
	Fire and explosion hazards
	Toxic/corrosive materials
Data Package Contents	Unique identification



Configuration Applicability & Pairing Matrix


Canister Class

→ Waste Form ◄

Repository Configuration

UPWARDS

DEEP ISOLATION

International Applications

Joint Project on Waste Integration for Small and Advanced Reactor Designs (WISARD)

- Treatment, recycling or reprocessing
- Spent fuel and waste storage
- Transportation
- Disposal

Conclusion

- Project concludes in July 2025
- Will deliver first-of-a-kind fully integrated waste management system
 - Accommodate 3 waste forms
 - Compliant to the design and analysis
 - Demonstrated suitability in generic performance envelope
 - Capable of pairing with waste forms and disposal methods using WAC

Thank you! PROJECT UPWARDS

Jesse Sloane, PE jesse@deepisolation.com

