Meet the CEO of Freestone, a Newly Acquired Deep Isolation Subsidiary

Blog by Kari Hulac, November 30, 2021

Meet the CEO of Freestone, a Newly Acquired Deep Isolation Subsidiary

Can recruiting an ace volleyball player lead to a 17-year business partnership? Apparently so, says Steve Airhart, CEO of Freestone Environmental Services, the newly acquired wholly-owned subsidiary of Deep Isolation.

Airhart, who studied geology at the University of Montana and launched a career in environmental consulting at the Pacific Northwest National Laboratory, was playing in a city volleyball league in the early 1990s when he heard that local environmental scientist Dan Tyler had just moved to town and had played college volleyball at Purdue University. He figured Tyler would be a great addition to the league team, so he didn’t waste time to make an introduction and invited him to a tryout.

Tyler, who founded Freestone Environmental Services in 1998, lived up to his volleyball reputation and joined the roster. Soon he and Airhart began collaborating off the court on waste management projects. As Freestone took on additional contract work at the Department of Energy’s Hanford nuclear weapons clean-up site, it made sense to become business partners in 2004.

These days Tyler serves in a high-level advisory role while Airhart leads the day-to-day operations. The recently announced acquisition of Freestone by Deep Isolation marks the next chapter in Freestone’s 23-year history, so we sat down with Airhart to learn more about his passion for environmental services and nuclear waste management.

Q. What intrigues you most about your role as an environmental consultant?

A. Environmental consultants provide a broad range of services to ensure compliance with the myriad of complex federal and state regulations. I focused my early career on the characterization and remediation of contaminated sites which allowed me to apply my science and geology background. Contaminated site characterization is particularly intriguing because it involves unraveling the mystery and interconnections of the site geology, hydrology, and geochemistry. That’s what makes our job interesting and challenging. When the location involves a contaminant release, we have to overlay our understanding of the subsurface to determine how the contaminant has moved and how to remediate it to reduce the risk it poses. Our work incorporates science and technology to understand the problem, the risk, and the regulatory framework that governs the cleanup. The final objective and reward is to remove a problem that otherwise would pose an ongoing risk to humans, biota, and the environment. It’s very satisfying.

Q. It sounds like your expertise fits nicely with Deep Isolation’s mission — to permanently dispose of nuclear waste in deep boreholes.

A. Interestingly I studied geologic disposal of radioactive waste at the University of Montana. Digging tunnels in granite for mined repositories intrigued me at the time, and later through my connections, I got into the work at Hanford. I’ve worked around many borehole drilling operations, though not to the depth that Deep Isolation’s looking at and for different purposes.

Q. What are some particularly interesting projects you’ve worked on?

A. Although I’ve been fortunate to work on complex clean-up projects at Hanford, some other notable projects involved smaller clean-up projects that I conducted independently as a private consultant.  These involved cleaning up after fuel-truck and railroad spills in remote locations in eastern Oregon. The logistics of managing the cleanup and ultimately receiving approval from the regulators was very gratifying.  Also, I’ll never forget working in the Alaskan Pribilof Islands where a group of us provided site characterization work on behalf of the National Oceanic and Atmospheric Administration (NOAA). That project tested our abilities to work in a very remote and challenging environment.  Invariably, remote projects involve unexpected complications requiring creative field troubleshooting solutions — which at the time can be stressful but also become the most memorable and rewarding.  

Hanford-Freestone Boat
Freestone conducting field work in the Columbia River near the Hanford Nuclear Site in eastern Washington.

Q. What excites you about being acquired by Deep Isolation?

A. While sometimes acquisitions lead to one company being absorbed by another, that’s not the case here. The goal is for each company to leverage the other’s strengths. Freestone will continue operating independently but will have opportunities to share technical experience to inform Deep Isolation projects. For example, our geologists could provide useful insights into Deep Isolation’s feasibility studies, where they study how a deep borehole repository for nuclear waste will work in certain types of rock deep underground. And certainly our experience with government contracts — we also have a prime contract with NOAA and previously held a prime contract with the U.S. Army Corps of Engineers  — could help inform Deep Isolation’s future contracts. On the Deep Isolation side, they’ve gained worldwide recognition for their solution in a very short timeframe, and we foresee this giving Freestone an opportunity to expand its footprint beyond Washington state.

Q. Speaking of government contracts, your primary customer is the U.S. Department of Energy’s Hanford site, where you provide scientific and regulatory support to the prime contractors. How would you characterize Freestone’s role with this project?

A. We have been very fortunate to establish ourselves as a go-to small business among the Hanford prime contractors.  We don’t take our responsibilities to our clients lightly, because ultimately their clean-up decisions must be effective and compliant and meet the expectations of their client, the U.S. Department of Energy, as well as a large number of stakeholder groups and regulators.  The Hanford site encompasses 586 square miles.  It is considered the largest environmental cleanup in the nation, involving a complex 50-year history of chemical storage and operations. Our work at the site varies and involves support to subsurface characterization activities, environmental data verification, and data management, site characterization reports, and preparation of regulatory planning and permitting documents.  Due to the variety of work we support, we work with staff with a variety of technical backgrounds and levels of experience. 

Q. Running a small business can be challenging. Describe your growth philosophy and what you see for your future.

A. To use a baseball analogy, our business philosophy is more in line with a small ball approach, where we emphasize slow incremental growth similar to advancing one base at a time.  We do this so as to not sacrifice our commitments and reputation with our current clients to achieve a more rapid gain. Over the years we have succeeded in maintaining a balance between maintaining our current client commitments while pursuing opportunities to diversify and grow. Something that we are less known for is our technology development. Using assistance from a series of Department of Energy-sponsored Small Business Innovative Research (SBIR) grants, Freestone developed a sensor to measure hexavalent chromium in groundwater. We hope in the next five years to have the opportunity to deploy multiple sensors to provide continuous real-time monitoring of the diminishing hexavalent chromium groundwater plumes near the Columbia River. Last but certainly not least, in light of our recent acquisition by Deep Isolation, we are excited to collaborate to support nuclear waste disposal demonstration projects and look for new government and commercial contract opportunities. 

Subscribe to Receive Our Newsletter


For more information about our solution, please contact us. 415 915 6506

Deep Isolation, Inc.
2120 University Avenue, Ste. 623
Berkeley, CA 94704